Conservation laws ,
نویسنده
چکیده
We show that if performance measures in stochastic and dynamic scheduling problems satisfy generalized conservation laws, then the feasible space of achievable performance is a polyhedron called an extended polymatroid that generalizes the usual polymatroids introduced by Edmonds. Optimization of a linear objective over an extended polymatroid is solved by an adaptive greedy algorithm, which leads to an optimal solution having an indexability property (indexable systems). Under a certain condition, then the indices have a stronger decomposition property (decomposable systems). The following classical problems can be analyzed using our theory: multi-armed bandit problems, branching bandits. multiclass queues, multiclass queues with feedback, deterministic scheduling problemls. Interesting consequences of our results include: (1) a characterization of indexable systems as systems that satisfy generalized conservation laws, (2) a. sufficient condition for idexable systems to be decomposable, (3) a new linear programming proof of the decomposability property of Gittins indices in multi-armed bandit problems, (4) a unified and practical approach to sensitivity analysis of indexable systems, (5) a new characterization of the indices of indexable systems as sums of dual variables and a new interpretation of the indices in terms of retirement options in the context of branching bandits, (6) the first rigorous analysis of the indexability of undiscounted branching bandits, (7) a new algorithm to compute the indices of indexable systems (in particular Gittins indices), which is as fast as the fastest known algorithm, (8) a unification of the algorithm of Klimov for multiclass queues and the algorithm of Gittins for multi-armed bandits as special cases of the same algorithm. (9) closed form formulae for the performance of the optimal policy, and (10) an understanding of the nondependence of the indices on some of the parameters of the stochastic schediiuling problem. Most importantly, our approach provides a unified treatment of several classical problems in stochastic and dynamic scheduling and is able to address in a unified way their variations such as: discounted versus undiscounted cost criterion, rewards versus taxes. preemption versus nonpreemption, discrete versus continuous time, work conserving versus idling policies, linear versus nonlinear objective functions.
منابع مشابه
On Black-Scholes equation; method of Heir-equations, nonlinear self-adjointness and conservation laws
In this paper, Heir-equations method is applied to investigate nonclassical symmetries and new solutions of the Black-Scholes equation. Nonlinear self-adjointness is proved and infinite number of conservation laws are computed by a new conservation laws theorem.
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملSelf-similar solutions of the Riemann problem for two-dimensional systems of conservation laws
In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملSymmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation
In this paper Lie point symmetries, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation are investigated. First of all Lie symmetries are obtained by using the general method based on invariance condition of a system of differential equations under a prolonged vector field. Then the structure of symmetry ...
متن کاملA new total variation diminishing implicit nonstandard finite difference scheme for conservation laws
In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...
متن کامل